

Where is all the methane coming from?

Joshua F. Dean

Lecturer in Biogeochemical Cycles

Methane – CH₄

- Methane is a "short-lived climate forcer"
- Average lifespan in the atmosphere ~10 years
- Global Warming Potential (GWP):
 - 34 over a 100-year time span
 - 86 over a 20-year time span
- Methane has attributed equivalent to ~60% of the radiative forcing of $\rm CO_2$ since 1750

Dean et al. (2018) Rev. Geophys.

Dean et al. (2018) Rev. Geophys.

Radiocarbon – ¹⁴**C**

- Carbon exists as two stable isotope (¹²C and ¹³C) and one radioactive isotope (¹⁴C)
- ¹⁴C has a half life of 5,730 years
- Produced in the lower stratosphere and upper troposphere by cosmic rays which create neutrons and these can strike ¹⁴N atoms forming ¹⁴C

Radiocarbon – ¹⁴**C**

- Different sources of methane can also have different ¹⁴CH₄ signatures depending on the age of the carbon they are formed from.
- For example:
 - Natural gas methane (fossil methane) is radiocarbon "dead" – has no ¹⁴C in it any more.
 - Methane from a cow belch has the same ¹⁴C signature as the contemporary atmosphere.

Methane in ice cores

 The last deglaciation when Earth last showed warming similar to what is predicted for our immediate future (~4°C)

Methane in ice cores

- The last deglaciation when Earth last showed warming similar to what is predicted for our immediate future (~4°C)
- Emission from other old methane sources were small (permafrost thaw and methane hydrates)
- These old methane sources may not be triggered by current and near-future climate change

Adapted from: Dean (2020) Science

Contemporary ice cores

- Fossil methane emissions increased from "negligible" in preindustrial times to 64.8 Tg CH₄ yr⁻¹ in 1940
- Preindustrial geologic methane emissions = 1.6 (max 5.4) Tg CH₄ yr⁻¹
 - Compared to 40—60 Tg CH₄ yr⁻¹ in previous estimates

Adapted from: Hmiel et al. (2020) Nature

Fossil fuels?

- If 1.6 (max 5.4) Tg CH₄ yr⁻¹ is correct, these are the probable level of background (natural) emissions of fossil methane today
 - What does that mean for today's methane accounts?
- Hmiel *et al.* (2020) estimate modern-day methane emissions from fossil fuel industry:
- 177 ± 37 Tg CH₄ yr¹
- 22% higher than previous estimate: 145 ± 23 Tg CH₄ yr⁻¹
 - Schwietzke et al. (2016) Nature
- Much higher than "bottom up" estimates of 114—133 Tg CH_4 yr⁻¹
 - Saunois et al. (2020) Earth Sys. Sci. Data

globalcarbonproject.org

"Bottom up"?

- "Bottom up" accounting:
 - Inventories of methane emissions from measurements and calculations around the emissions source, upscaled to national or global scale

• Vs.

- "Top down" accounting:
 - Measure the total emissions from atmospheric content (e.g. current measurements, satellites or ice core bubbles), and estimate possible sources
 - e.g. Hmiel et al. (2020) Nature
- Recent study suggested that US Environmental Protection Agency methane emission estimates from fossil fuel industry (bottom up) were 60% lower than actual (top down) estimates, likely due to under-reporting by industry
 - Alvarez et al. (2018) Science

Conclusions

"Our results imply that anthropogenic fossil CH_4 emissions now account for about 30% of the global CH_4 source and for nearly half of anthropogenic emissions, highlighting the critical role of emission reductions in mitigating climate change"

Hmiel et al. (2020) Nature

- Leaky gas pipes and legacy infrastructure (especially in USA and Russia) are crucial places to start (Pardikar 2021, *EOS*)
- Especially if natural gas is to be used as a 'bridging fuel' or as part of a shift to 'renewable' hydrocarbons.

GLOBAL METHANE BUDGET 2008-2017

Thank you

Joshua Dean

Dept. Geography & Planning, University of Liverpool

joshua.dean@liverpool.ac.uk

@JoshuaFDean

